Auxin regulated gene expression has been extensively studied and is known to involve active transcriptional regulation as well as protein degradation. One outstanding question in the field is how these gene expression changes are captured at the level of protein abundance. In order to address this knowledge gap, we have utilized global proteomics profiling approaches across tissues and time in Arabidopsis following auxin treatments. 

Across the tree of life glucose is a central nutrient signaling molecule. The post-embryonic developmental plasticity of plants relies on the ability of stem cell populations (termed meristems) to integrate environmental cues, such as nutrient signaling, with hormone signaling for coordinated growth and developmental transitions. Auxin is one of the classical plant hormones in plant development and it is well appreciated that auxin influences many aspects of plant growth; how diverse growth responses are driven by one simple molecule is still an outstanding question in the field.

Recent News

May 7, 2019

Auxin induces rapid abundance changes in various signaling proteins, transcriptional regulators, and enzymes such as cell wall modification proteins in roots. Loss of function of 15 top responsive proteins results in altered root phenotypes, demonstrating the power of this approach for reverse genetics screens. Characterization of the auxin responsive protein GALACTURONOSYLTRANSFERASE10 demonstrates that this enzyme positively regulates sugar mediated root meristem maintenance.

May 7, 2019

Sarah received a Sui Tong Chan Fung Fund Internship in the Department of Genetics, Development and Cell Biology.  This summer internship will allow her to continue her work on auxin regulated proteins and their roles in hypocotyl growth. Thanks to the GDCB and Genetics program for supporting this research!

May 7, 2019

Sarah Loo was awarded a Sui Tong Chan Fung Fund for the Promotion of Study and Research in Genetics Scholarship to reward academic achievement. She conducted research in the lab during Spring 2019 semester on functional characterization of auxin regulated proteins during hypocotyl growth. This award is administered by the GDCB department and we are very grateful for the support!